COCERAL MYCOTOXINS SURVEY: SYNTHESIS REPORT 2017

Results of the Mycotoxins management survey carried out among COCERAL members

October 2019
EXECUTIVE SUMMARY

COCERAL has first carried out a survey among its members regarding mycotoxin management in 2007. The survey was repeated in 2009, 2011, 2013, 2015 and latest in 2017. Over the time, some questions have been adapted or added to the survey but essentially with the continuing objective to gain an overview on of mycotoxins management carried out by COCERAL members.

COCERAL members are on the one hand grain collectors and international traders of cereals, rice, feedstuffs, oilseeds and others but also agrosupply distributors, who often advise farmers all along the production cycle - on the choice of seed varieties and the of use of fertilisers and plant protection products.

The first part of the survey focuses specifically on agrosupply distributors’ contribution to prevention of mycotoxins risk in the field. Almost all agrosupply distributors participating in the 2017 survey that advise farmers inform about practices aimed at minimising mycotoxin development on cropland, for example by recommending fusarium resistant seeds or adapted fungicides treatments or generally advising on agricultural practices. Further to the advice provided, mycotoxin risk management of farmers normally improves.

The second section of the survey aims at sampling and testing practices pursued by grain collectors and international traders. They intervene after the grain is harvested. Collectors mainly test at harvest or in store but also at loading before transport. When importing, testing tends to take place at delivery but also at loading before transport whereas in intra EU-trade, testing is done mostly in store or at loading before transport.

With almost 100% of survey participants indicating that they sample their lots to monitor mycotoxins, this highlights an increasing awareness of mycotoxin issues. This trend was confirmed also in the report 2015. Survey participants were also asked which crops they sample on which mycotoxins. From the 2017 results, wheat and maize appears to be the most tested crops. Some change in the testing patterns could be observed when comparing the replies with the 2015 survey: in general, barley and oat seem to have been tested slightly more back in 2015, especially on Ochratoxin A; also, for example Zearalenone testing is done at a higher level on maize than on wheat, opposite to 2015 survey findings. Moreover, the 2017 survey confirm the same trend outlined in the report 2015, with respondents switching more and more from internal methods or the use of official control regulation sampling plans towards contractual methods, such as GAFTA 124.

When carrying out mycotoxin analysis internally, operators use both bandage kits and quantitative methods of analysis. When rapid analysis is required, all collectors and traders also use external analysis. However, external analysis is also used to validate analysis carried out internally, or to complement for missing data, for example when internal testing equipment is not available.

According to the 2017 survey, less than 7 % of the participants have had to recall a product lot due to exceedance of regulatory limits (this value was twice in the 2015 report). As in the 2015 report, the product recalls are entirely due to commercial complaints.
REGULATORY SITUATION

Foodstuffs

Feedingstuffs

Recommendation regarding presence of T-2 and HT-2 toxins

Discussions on T-2 and HT-2 toxins have been going on for several years. In March 2013, the Commission published a recommendation (2013/165/EU) regarding the presence of T-2 and HT-2 toxin in cereals and cereal products. Member States are asked to perform, with the active involvement of feed and food business operators, a monitoring for the presence of T-2 and HT-2 toxin in cereals and cereals products. In the case of repetitive findings of levels above the indicative level within a certain period of time, investigations on the effects of feed and food processing on the presence of T-2 and HT-2 toxins shall be performed.

The recommendation includes indicative levels for the sum of T-2 and HT-2 (µg/kg) for unprocessed cereals, cereal grains for direct human consumption but also for cereal products for feed and compound feed (rice and rice products are not included).

Maximum levels for mycotoxins in food and feed

The table here below summarizes the limits and guidance values for food and feed.
Table 1: Summary of current limits for mycotoxins (data from COMMISSION REGULATION (EC) No. 1881/2006 – consolidated version March 2018)

<table>
<thead>
<tr>
<th>Mycotoxins</th>
<th>Foodstuffs Regulated maximum levels</th>
<th>Feedingstuffs levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE MYCOTOXINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aflatoxins</td>
<td>Sum of B1, B2, G1, and G2:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4 ppb for cereals and products derived from cereals (excluded maize, rice and processed cereal products, baby foods and dietary foods for infants)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 10 ppb and 5 ppb (B1) for maize and rice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aflatoxin B1:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 2 ppb for cereals and products derived from cereals (excluded maize, rice and processed cereal products, baby foods and dietary foods for infants)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 5 ppb for maize and rice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.1 ppb for processed cereal-based foods and baby foods for infants and young children</td>
<td></td>
</tr>
<tr>
<td>OTA (Ochratoxin A)</td>
<td>- 5 ppb for unprocessed cereals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 3 ppb for all products derived from unprocessed cereals including processed cereal products except if for infants and young children (0.5 ppb)</td>
<td></td>
</tr>
<tr>
<td>FIELD MYCOTOXINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DON (Deoxynivalenol)</td>
<td>- 1250 ppb for unprocessed cereals other than durum wheat, oats and maize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1750 ppb for unprocessed durum wheat and oats</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1750 ppb for unprocessed maize with the exception of unprocessed maize intended to be processed by wet milling (starch production)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- (rice is excluded from “unprocessed cereals”);</td>
<td></td>
</tr>
<tr>
<td>ZEA (Zearalenone)</td>
<td>- 100 ppb for unprocessed cereals other than maize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 350 ppb for unprocessed maize with the exception of unprocessed maize intended to be processed by wet milling (starch production)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- (rice is excluded from “unprocessed cereals”);</td>
<td></td>
</tr>
<tr>
<td>FUMONISINS B1+B2</td>
<td>- 4000 ppb for unprocessed maize with the exception of unprocessed maize intended to be processed by wet milling (starch production).</td>
<td></td>
</tr>
<tr>
<td>Ergot sclerotia</td>
<td>- 0.5 g/kg for unprocessed cereals with the exception of maize and rice</td>
<td></td>
</tr>
<tr>
<td>Sum of T-2 and HT-2 toxin indicative levels from which in case of repetitive findings, onwards investigations should be performed (Commission recommendation)</td>
<td>Unprocessed cereals:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 200 ppb for barley (including malting barley) and maize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1000 ppb for oats (with husk)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 100 ppb for wheat, rye and other cereals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommended guidance values:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 500 ppb for other cereal products (2000 ppb for oat milling products (husks))</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

This report aims to show the results of a biannual survey on the management of mycotoxins carried out by COCERAL members.

COCERAL is considered as the voice representing the European cereals, rice, feedstuffs, oilseeds, olive oil, oils and fats and agrosupply trade. COCERAL members act in the food and feed supply chain, both at the level of agrosupply distributors and grain traders (Figure 1).

Agrosupply distributors often advise farmers all along the production cycle - on the choice of seed varieties and the use of fertilisers and plant protection products, also taking into account the local conditions (environmental, pedo-climatic, economics, etc.). Many agrosupply distributors also provide information about the time of intervention on the crop, the role of meteorological conditions, or the correct dosage for the chosen product.

Grain collectors and international traders intervene after the grain is harvested. Collectors sample and analyse the crops at reception. Then they dry, clean and protect the grain from insect infestations in order to adapt the crops to both the regulatory requirements and the commercial contracts.

Agrosupply distributors and grain trading operators contribute to the management and control of mycotoxins in the batches traded within European Member States.

This report will highlight which tools and actions are put in place to manage the risk of mycotoxins by agrosupply distributors and grain traders.

Figure 1 Composition of the food and feed supply chain. COCERAL members act before and after the farmers as agrosupply distributors, grain collectors and international traders.
SURVEY DESIGN

- **Population of concern**
 - European agrosupply distributors and grain trading companies;
 - The survey includes replies from Austria, Belgium, France, Germany, Greece, Italy, Netherlands, Poland, Romania, Spain, and the UK.
 - The operators from the member states who replied to the survey are members of national associations of COCERAL.

- **Enquiry setting**
 - Operators have been consulted via a questionnaire (see Annex 1) sent to them by email.
 - The enquiry was launched on 9th March and closed on 31st March 2018. A second round of enquiry was launched on 4th April and closed on 20th April 2018. A third and last round of enquiry was launched on 23rd May and closed on 8th June 2018.
 - The COCERAL Secretariat received 36 replies, covering a total volume of traded grains of 36 million tonnes (equivalent to more than 13% of total EU market share).

The description of the method for processing the replies can be found in Annex 2.

STARTING DATA

- The survey starting data was collected through the questionnaire. The participants were asked to specify the volume of grain traded on a yearly basis and the number of farmers the operator is dealing with.
 - All data received from operators from the same Member State were aggregated.

- **Volume of traded grains**
 - The volume of traded grains is composed of the volume collected from European farmers and of grains imported into the European Union.
 - The results of the questionnaire are expressed proportionally to the total volume of grains traded within each member state.
 - The external data on EU imports and intra-EU trade is sourced from Eurostat.
Table of Contents

1 Minimising risks posed by mycotoxins in the field 8
 1.1 Do you specifically advise farmers on mycotoxins management? 8
 1.2 How do you manage risks of mycotoxins in the field? (multiple answers possible) .. 9
 1.3 When advising farmers, what kind of approach to manage mycotoxins are you using? (multiple answers possible) ... 10
 1.3.1 In case you apply the Forecast Model, by whom has it been proposed? 10
 1.4 After advising farmers, the management of mycotoxins risk improves, stagnates or becomes worse? ... 11

2 Sampling, analysis and detection of mycotoxins ... 12
 2.1 Do you carry out sampling in your lots for the detection of mycotoxins? 12
 2.1.1 If YES, which mycotoxin/s are you analysing and in which crop/s? (multiple answers possible) .. 13
 2.2 Which sampling method/s is/are used by your company for mycotoxins analyses? ... 14
 2.3 According to your activities, when do you test your lots for mycotoxins? (multiple answers possible) .. 15
 2.4 Which frequency of testing are you applying? (multiple answers possible) ... 15
 2.5 Do you carry out visual tests? .. 16
 2.6 Do you carry out your own mycotoxins analysis at your company? 17
 2.7.1 If you carry out mycotoxin analysis at your company, which kind of method of rapid test do you use? (multiple answers possible) 17
 2.7 Do you carry out analysis to evaluate the presence of mycotoxins by external laboratories? ... 18
 2.7.1 If you carry out external analysis for the mycotoxin monitoring, what is the purpose? (multiple answers possible) ... 18
 2.8 Is your testing laboratory accredited in accordance with the international standard ISO/IEC 17025:2005? ... 20

3 Regulation enforcement and controls ... 21
 3.1 Have you been already controlled in the framework of the official regulation for mycotoxins in foodstuffs? ... 21
 3.2 Apart from exceeding regulatory limits, did you have to conduct a product recall? ... 21
 3.3 If you had to conduct a product recall, was that recall the result of an official control or due to a commercial complaint? .. 22

ANNEX 1: QUESTIONNAIRE “MYCOTOXIN MANAGEMENT” 2017 23
ANNEX 2: METHOD FOR REPLIES PROCESSING ... 28
1 Minimising risks posed by mycotoxins in the field

This section refers to the agrosupply section members of COCERAL.

Agrosupply distributors often advise farmers all along the production cycle - on the choice of seed varieties and the use of fertilisers and plant protection products, also taking into account the local conditions (environmental, pedo-climatic, economics, etc.). Many agrosupply distributors also provide information about the time of intervention on the crop, the role of meteorological conditions, or the correct dosage for the chosen product.

1.1 Do you specifically advise farmers on mycotoxins management?

77% of the agrosupply distributors indicated that they advise farmers on practices aimed at minimising the risk of mycotoxin development on cropland. This highlights that mycotoxin management is still a key concern for COCERAL agrosupply members, and that operators use their role to contribute to the management of mycotoxins in field. It has to be mentioned that there was a small increase in advice provided from agrosupply distributors to farmers since the last survey in 2015 (68%).
1.2 How do you manage risks of mycotoxins in the field? (multiple answers possible)

As in 2015, when advising farmers regarding mycotoxins, agrosupply distributors put their emphasis on recommending fusarium resistant seeds and specific fungicide treatments. As in 2015, they also provided advice on agricultural practices. Another approach pursued in one country is through industry agreed best practice approaches, detailing risk and strategies for minimizing risk. Furthermore, agrosupply distributors generally also sell the seeds and fungicides they recommend.
1.3 When advising farmers, what kind of approach to manage mycotoxins are you using? (multiple answers possible)

The dominant models agrosupply distributors use when advising farmers seem to be forecast models for fusarium or mycotoxin risk. The percentage has slightly increased from the last survey in 2015 among agrosupply distributors. Meteorological data is still used by a large part (trend increased from 54% in 2015 to 68%). Some also use other means such as observation, or provide online tools (slight decrease since 2015, from 17% to 14%). More respondents than in 2015 indicated that they use no model (9% in 2015 against 2% in 2013).

If the forecast model is used, this is still normally proposed by plant protection companies or technical institutes (see graph below). However, compared to the 2015 survey results, the role of plant protection companies and Technical institutes’ input has slightly decreased, while the role of seed breeders has considerably increased (45% in 2017 against 17% in 2015).

1.3.1 In case you apply the Forecast Model, by whom has it been proposed?
1.4 After advising farmers, the management of mycotoxins risk improves, stagnates or becomes worse?

The agrosupply distributors advising farmers on agricultural practices normally observe an improvement of the mycotoxin risk management of farmers (91%). The level seems to be improved when compared to 2015 (64%). Fewer members indicated a stagnation in mycotoxins risk management of farmers (9% in 2017 against 34% in 2015). By further enhancing the collaboration between the principal actors involved and gathering more knowledge concerning the mycotoxins and their prevention, distributors continuously aim to improve the situation.
2 Sampling, analysis and detection of mycotoxins

This section refers to grain collectors and international traders members of COCERAL.

Grain collectors and international traders intervene after the grain is harvested. Collectors sample and analyse the crops before reception. Then they dry, clean and protect the grain from insect infestations in order to comply with regulatory requirements and commercial contract requirements.

2.1 Do you carry out sampling in your lots for the detection of mycotoxins?

This graph confirms the trend in growing awareness and extent of the level of monitoring that operators put in place for mycotoxin detection: almost 100% of the respondents to the survey indicated that they carry out mycotoxin sampling operations on their lots, as in 2015.
2.1.1 If YES, which mycotoxin/s are you analysing and in which crop/s? (multiple answers possible)

This chart indicates the level of testing of different crops regarding the different mycotoxins.

Wheat and **Maize** appears to be the most tested crops, with zearalenone and DON being the mycotoxins tested by the largest number of operators. More than 50% of the participating operators tested wheat and maize also on ochratoxin A. Data on **Maize** also indicates that fumonisin and aflatoxin testing is performed more on maize than on wheat.

The survey findings suggest that oat and barley or other crops are less frequently tested on mycotoxins than wheat and maize.

In comparison to survey replies in 2015, some changes in testing patterns can be observed:

On **zearalenon**, a higher level of testing was done on oat, maize and other crops; **fumonisin** was also tested more often, that is also on wheat and maize, with test on barley remaining at the same level of 2015. Many more operators indicated that they tested barley and oat on **DON** more than they did in 2015. **T-2 + HT-2 toxins** and **ochratoxin A** testing has remained at the same level of 2015, with a light increase on wheat and maize, respectively for T-2 + HT-2 toxins and ochratoxin A. Regarding **aflatoxin**, 2017 survey results confirm the same trend as per 2015 survey (higher testing on wheat and maize and barley than on oat and other crops).
2.2 Which sampling method/s is/are used by your company for mycotoxins analyses?

Compared to 2015, the results of the survey suggest a reverse trend from contractual methods or CEN/ISO standards towards official control sampling plans and contractual methods of sampling. Since 2009, the use of contractual methods has undergone an unsteady development; from an insignificant level in 2009 it increased in 2011 and decreased again according to the 2013 and 2015 survey results. Contractual sampling requirements seem to often demand the application of GAFTA 124.
2.3 According to your activities, when do you test your lots for mycotoxins? (multiple answers possible)

Collectors

- Before harvest: 10%
- At harvest (from farmers to collectors): 52%
- In store: 48%
- At loading before transport (e.g., loading of trucks/vessels/etc.): 33%
- At delivery (to first processing industry): 19%

EU Trade

- Before harvest: 1%
- At harvest (from farmers to collectors): 9%
- In store: 19%
- At loading before transport (e.g., loading of trucks/vessels/etc.): 28%
- At delivery (to first processing industry): 1%

Import

- Before harvest: 0%
- At harvest (from farmers to collectors): 4%
- In store: 5%
- At loading before transport (e.g., loading of trucks/vessels/etc.): 20%
- At delivery (to first processing industry): 2%
2.4 Which frequency of testing are you applying? (multiple answers possible)

Those operators that perform mycotoxin testing normally follow a monitoring plan (59%), while 41% follow a monitoring plan with a risk assessment. 22% of the operators even perform systematic testing for all entries.

2.5 Do you carry out visual tests?

About 50% of operators carry out visual tests as a support to rapid test systems. Such practice seems less common as in the 2015 survey, more than 66% indicated that they have done so.
2.6 Do you carry out your own mycotoxins analysis at your company?

The level of internal testing of mycotoxins keeps the same trend as in the 2015 survey.

2.7.1 If you carry out mycotoxin analysis at your company, which kind of method of rapid test do you use? (multiple answers possible)

The graph indicates a balanced use of bandage kits and quantitative analysis. This trend was also confirmed in the 2015 report, although the use of bandage kits has increased (44% from 23%) despite a slight decrease in use of quantitative analysis. Operators declared that the main supplier of bandage kits and quantitative analysis is still Neogen (48% and 67% of the replies, respectively), as also confirmed in 2015 report.
2.7 Do you carry out analysis to evaluate the presence of mycotoxins by external laboratories?

Rapid analysis is required when a lot is received at a silo or warehouse and therefore rapid tests to support on-site decisions of lot acceptance are frequently used. Compared to 2015, the trend is confirmed although 7% of the respondent declared that they don’t carry out analysis by external laboratories.

2.7.1 If you carry out external analysis for the mycotoxin monitoring, what is the purpose? (multiple answers possible)

External analysis is also used to confirm the results of internal testing and/or to provide for missing data. While in the survey from 2015, the lack of internal testing equipment was the main rationale indicated for carrying out external analysis (60%), in the 2017 survey the reason mentioned most often was to complement for internal analysis and to validate internal data.
2.7.2. If you carry out external analysis for the mycotoxin monitoring, what is the methodology used by the laboratory? (multiple answers possible)?

Compared to the 2015 survey, the use of ELISA (standardized) methodology in external laboratories has slightly increased (from 14% to 25%). It’s important though to note that no internal ELISA method is used by the respondents. HPLC seems to remain the most used technique for external analysis since 2007 (83% in 2015); the use of GC technique has reduced from 23% (2015 data) to almost 8%, while 16% of the respondents who didn’t declare or weren’t aware of the testing method in place by external laboratories.
2.8 Is your testing laboratory accredited in accordance with the International standard ISO/IEC 17025:2005?

Since 2007, the number of laboratories used that are accredited with EN17025 seems to have significantly increased. This is a positive development as accredited laboratories must publish the level of uncertainty linked to the analysis they perform which enhances the level of transparency and the comparability of analysis results. The number of accredited laboratories increased from 79% in 2015 to 85%.
3 Regulation enforcement and controls

3.1 Have you been already controlled in the framework of the official regulation for mycotoxins in foodstuffs?

According to the survey replies, 54% of operators have been controlled within the framework of the official controls regulation on mycotoxins. This percentage was slightly lower in the 2015 report (42%).

3.2 Apart from exceeding regulatory limits, did you have to conduct a product recall?

In the case that there was an exceedance of regulatory limits, only 7% had to recall a product lot. In the replies to the 2015 survey, this percentage was double (17%).
3.3 If you had to conduct a product recall, was that recall the result of an official control or due to a commercial complaint?

It is important to note that, while in the 2015 survey, product recalls were due entirely to commercial complaints, the impact of official controls has increased to 14%.
ANNEX 1: QUESTIONNAIRE “MYCOTOXIN MANAGEMENT” 2017

YOUR COMPANY IS (more than one answer is possible)

☐ Providing advice and selling seeds and/or Plant Protection Products (PPPs) (Agro-supply advisor on the use of PPPs)
 ▼ To how many farmers (approx.):

☐ Collecting grains from farmers
 ▼ Collected volume of grains (2016/2017): tons

☐ Trading volumes of grains among the EU Member States
 ▼ Purchased volume from collectors (2016/2017): tons

☐ Importing volumes of grains into the EU
 ▼ Imported volume into the EU (2016/2017): tons

☐ Other, please specify:

SECTION 1. MINIMISING RISKS POSED BY MYCOTOXINS IN THE FIELD (for agro-supply members)

1.1. Do you specifically advise farmers on mycotoxins management?
 □ NO (if no, please go to SECTION 2)
 □ YES

1.2. How do you manage risks of mycotoxins in the field? (more than one answer is possible)
 □ By advising on agriculture practices (till, former crops...)
 □ By recommending Fusarium resistant seeds
 □ By recommending adapted fungicides treatments
 □ Other (please specify):

1.3. Do you sell the recommended seeds or fungicides?
 □ Yes
 □ No

1.4. When advising farmers, what kind of approach to manage mycotoxins are you using (more than one answer is possible)
 □ Meteorological data
 □ A forecast model for Fusarium or mycotoxins risk
 □ No model
 □ Others means (please describe)
1.4.1. In case you apply the Forecast Model, by whom has it been proposed?

- Plant protection companies
- Seed breeders
- Technical institutes
- Public authorities

1.5. After advising farmers, the management of mycotoxins risk:

- Improves
- Stagnates
- Worsens

SECTION 2. SAMPLING, ANALYSIS AND DETECTION OF MYCOTOXINS (for grain collectors and traders)

2.1. Do you carry out sampling in your lots for the detection of mycotoxins?

- NO (if no, please go to SECTION 3)
- YES:

2.1.1. If YES, which mycotoxin/s are you analyzing and in which crop/s? Please tick the cells of the table below for each crop/mycotoxin combination

<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Barley</th>
<th>Oat</th>
<th>Maize</th>
<th>Other (please specify)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zearalenon</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fumonisins</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>DON</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>T2/HT2</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Ochratoxin A</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Aflatoxin</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

2.2. Which sampling method/s is/are used by your company for mycotoxins analyses?

- Regulation for official controls (EU Reg. 401/2006 (food) and/or Regulation 691/2013 (feed)
- CEN method EN/ISO 24333
- Internal method – please specify
- Contractual method (e.g., GAFTA 124, FOSFA)) – please specify
2.3. According to your activities, when do you test your lots for mycotoxins? (more than one answer is possible)

<table>
<thead>
<tr>
<th></th>
<th>Before harvest</th>
<th>At harvest (from farmers to collectors)</th>
<th>In store</th>
<th>At loading before transport (e.g. loading of trucks/vessels/etc.)</th>
<th>At delivery (to first processing industry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4. Which frequency of testing are you applying? (more than one answer is possible)

- [] Systematic for all entries
- [] Based on a monitoring plan
- [] Based on a monitoring plan and risk assessment (please specify)

2.5. Are you certified under any food and/or feed safety management schemes (for example GTP Code, GMP+FSA, GMP of OVOCOM, FEMAS, UFAS, TASCC, Q&S, CSA-GTP, GTAS, ISO 22000)

- [] Yes
- [] No

2.5.1 If YES, please specify under which certification scheme you are accredited

2.6 Do you carry out visual tests?

- [] Yes, only visual tests
- [] Yes, together with rapid test systems
- [] No

2.7 Do you carry out your own mycotoxins analysis at your company?

- [] Yes
- [] No

2.7.1 If YES, which kind of method of rapid test do you use for mycotoxin detection at your company?

- [] Bandage kit (Elisa semi-quantitative)
- [] Quantitative analysis (Elisa)
- [] Others (please, specify)
2.7.2 Who is/are your supplier(s) of rapid tests?

<table>
<thead>
<tr>
<th></th>
<th>Bandage kit (Elisa semi-quantitative)</th>
<th>Elisa (quantitative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Biopharm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (please indicate)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.8 Do you carry out analysis to evaluate the presence of mycotoxins by external laboratories?

[] Yes
[] No

2.8.1 If YES, what is the purpose of the external analysis?

[] Because you do not have your own testing equipment
[] To complement your internal analysis
[] To validate your internal analysis

2.8.2 If YES, what is the methodology used by the lab?

[] Elisa method
 [] Standardised method (please specify):
 [] Internal method (please specify):
[] HPLC technique
[] GC technique
[] I don't know

2.9 Is your testing laboratory accredited in accordance with the international standard ISO/IEC 17025:2005?

[] Yes
[] No
[] I don’t know

SECTION 3. REGULATION ENFORCEMENT AND CONTROLS

3.1 Have you been already controlled in the framework of the official regulation for mycotoxins in foodstuffs?

[] Yes
[] No

3.1.2 If YES, by whom? (Please, indicate by which public service)
3.2. Apart from exceeding regulatory limits, did you have to conduct a product recall?

☐ Yes
☐ No

3.3 If yes, was that recall the result of an official control or due to a commercial complaint?

☐ Official control
☐ Commercial complaint

4. Other comments on mycotoxin management
ANNEX 2: METHOD FOR REPLIES PROCESSING

- **Method design**
 - The replies sent by the operators are assumed to be representative for the whole country they represent.
 - Each participant specified the volume of cereals traded; the total volumes mentioned representing 20% of the total volume of cereals traded in those countries.

- **Calculation steps and formula**
 - The reply to each question was weighted by the total contributions received for that country thus returning the country’s-dependent mean reply: $R_C (%)$
 - The volume of grains traded within each country was divided by the volume of grains traded within all the countries participating in the survey, thus obtaining W_C.
 - The overall result, $R (%)$, was obtained as the average of all member states-dependant mean (R_C) weighted by W_{MS} (weight of the member state).

\[
R = \sum_{MST} R_C \times W_C
\]

Where $R (%) = \text{overall result}$

- $R_C = \text{mean reply for member state} (%)$
- $W_C = \frac{V_C}{V_{All}}$; where $V_C = \text{Volume traded in the participant country}$
- $V_{All} = \text{Total volume of countries participating to the survey}$